
A Global Distributed Storage Architecture

Dr. Nemo M. Lionikis

Michael F. Shields

Department of Defense

9800 Savage Road

Fort Meade, MD 20755

nemo @romulus.ncsc.mil

mfs @ romulus.nc sc.mil

Tel: 301-688-9509

Fax: 301-688-9599

I. Introduction

NSA architects and planners have come to realize that to gain the maximum benefit from,

and keep pace with, emerging technologies, we must move to a radically different

computing architecture. The compute complex of the future will be a distributed

heterogeneous environment, where, to a much greater extent than today, network-based

services are invoked to obtain resources. Among the rewards of implementing the

services-based view are that it insulates the user from much of the complexity of our

multi-platform, networked, computer and storage environment and hides its diverse

underlying implementation details. In this paper, we will describe one of the fundamental

services being built in our envisioned infrastructure; a global, distributed archive with

near-real-time access characteristics. Our approach for adapting mass storage services to
this infrastructure will become clear as the service is discussed.

II. High Level Architecture

As a world-wide organization, NSA's storage and retrieval services must provide for

rapid, efficient, and user-driven data access from any node in our organization. Storage

services must be accessible yet secure, scalable, reliable, cost effective, and manageable.

The technologies used to implement storage must be commercial-off-the-shelf (COTS)

wherever possible and the user interface to these services must be clear and simple.

Moreover, a key requirement of the services is that they must support the notion of near-
real-time access to data.

Because traditional file-based solutions, with their induced latency, are inadequate to

meet the near real-time processing requirements being levied today by our users, we are

developing the Byte Stream Storage and Transfer Service. The user sees the Byte Stream

Storage and Transfer Service as a globally distributed archive with near-real-time access.

The service is intended as a mechanism that allows a user to access and manipulate data

streams. It is a critical feature of the stream service that while a producer is creating a

stream at one location, a consumer, possibly at a geographically remote location, can

67

beginto accesstheproducer'sdata. Oneof ourdesigngoalsis thatnomatterwhereusers
arelocated,a consumercanbeginaccessingdatawithin secondsof its creation.

Oneof the most radicalaspectsof the proposedstreamserviceis the assumptionof all
storagemanagementby theservice. Thereis noconceptof an "archived"stream. Once
datahasbeenwritten into theservice,theuserhasone,andonly one,view of it. Theuser
sees"a stream", not "a local disk copy" or "an archivedcopy", each with its own
interfaceinvolving different commandsand even operatorinterventionto gain access.
Noknowledgeof datalocationis requiredon thepartof a user. No specialcommandsto
accessstorageare required. No specialcommandsto transferdata to the processing
system are required. No thought, beyond initial system configuration, is given to
availability of space. No applicationcodeis requiredto handlefile boundariesandfile
namesfor a streamof data. Thesemechanismsarecreatedonceandfor all in theservice
and thenappliedconsistentlyto everystream. Usersmust only know the nameof the
streamtheywish to accessandtheservicewill find anddeliver thedata.

A user-levelapplicationthatprocesseslive,non-burstsignalsshouldbeableto work with
a dataabstractionthat modelsthe "stream-oriented"natureof thesesignals. The notion
of a Byte StreamStorageand Transfer Servicewas devisedto support such a data
abstraction. A by-productof adoptingthe streamdataabstractionis that it supportsthe
notion of near-real-timeprocessingof live dataquite naturally.When moving a byte
stream,wedonot assumethattheentirestreamis presentor, in fact, thattheentirestream
evenexistsyet. We cannotthink in termsof transferringtheentirestreamto a specified
hostandprocessingit. Rather,weareconstantlytransferringbytesof the streamasthey
are created. The conceptof a servicethat movesand storesstreamsis not apriori

necessary, but its advantages are huge. One cannot overstate the value of a single,

universally accepted abstraction for a byte stream, captured in a stream service. Not

having such a service requires producing distinct, possibly incompatible, file-based

solutions for each new production data flow, with all of the attendant naming, storage,
movement, administration, accounting, and maintenance issues that the new solutions
would demand.

Internally, the byte-stream service is a set of geographically distributed relay/storage hubs

(Figure 1), that cooperate with each other and with interface software running within a

stream consumer or producer process, to accomplish the movement and storage of data.
The hubs are connected via a network and control software within the hubs

communicates via standard protocols (TCP/IP or UDP/IP). Hubs are logical entities that

may consist of several systems. A stream might reside within a single hub or be

distributed among multiple hubs. Multiple copies of pieces of the stream may exist in

different hubs. A consumer will receive a copy from the nearest hub. There are no

coherency issues because a stream can be written only once (archive semantics). There

are, however, issues of deleting extra copies when they become old or inactive and the

68

streamservicemustinstitutepoliciesto managethis. In general,onecopywill be labeled
for retentionandall othercopieswill beconsideredcachedandcanbedeleted.

Large
Site

":::

Small
Site

S_lt eall Sbl_ll_l

Figure 1" High Level Architecture of the Global Archive

The stream service interface will mimic the POSIX system call I/O interface, with

common UNIX extension, using the C-language binding. There are at least two

compelling reasons for doing this. First, the POSIX system call interface has been used

in countless settings and has proven its versatility. It is safe to assume tliat the interface

will support both current and future requirements. Second, developers are already

familiar with the interface, so, learning to use the stream service should not be an onerous

task. Having said this, it must be pointed out that the stream service interface will be a

mixture of file and network semantics. This is because it is desirable to allow a developer

to use such calls as creat0, open(), close(), read(), write(), and lseek0 from the file

domain. It is also necessary, though, to provide the capabilities of select() from the

network domain in order to support the abstraction of a near-real-time stream. The actual

interface will consist of a library of subroutines containing at least yopen0, ycreat(),

yclose0, yread0, ywrite0, ylseek0, and yselect0.

69

Figures2 and 3 providesimpleexamplesof how theseroutinescan beusedto reador
write astream. To read,auserapplicationwill opena stream,referringto it by a name.
The applicationthenseeksto thepositionof interestandrepeatedlyreadsandprocesses
data. When done, the applicationwill close the stream. Writing a streamwill be a
similar sequenceof calls (open,repeatedwrites,andclose). Both of thecodesegments
areextremelysimpleanddramaticallyillustratethevirtuesof the streamservice. Note
that there is no referenceto location, no concernaboutfile boundaryconditions, no
concernaboutstorage.Thereis alsononotionof whetherthedatais beingobtainedfrom
storageor from a live source. Theprogramonly requiresa nameto accessthestream.
All of thegeneralproblemsof movementandstoragearehandledtransparently.It should
benoted,again,that oneassumptionof thestreamserviceis that, oncecreated,a stream
cannotbe edited. In order to modify a stream,it must be read,processed,and a new
streamcreatedfor theresultantoutput.

stream _id sid;

char* buffer[MAX];

int bytes_read;

sial = yopen("stream name", YO_RDONLY);

ylseek(sid, POSITION, YSEEK_SET);

while ((bytes_read = yread(sid, buffer, MAX)) != ERROR) {

/* Process the bytes read from the stream

yclose(sid)

*/

Figure 2: Reading a byte stream

stream _id sial;

char* buffer[M AX];

int b ytes_w ritten;

sial = yopen("stream_name", YO_CREAT I YO_WRONLY);

while (NOTDONE) {

/* Get data and perform processing

bytes_written = ywrite(sid, buffer, MAX);

yclo se(sid)

*/

Figure 3: Creating and writing a byte stream

70

Whena userprocesswishesto write a stream,it beginsby calling yopen. Internally,the
service interface softwareestablishescommunicationswith its local hub (Figure 4).
When writing begins,an agentis startedon the hub and is connectedto the interface
softwarein theuserprocess.Datathenpassesthroughtheinterfaceto the agenton the
hub whichcachesthedataondisk. As thecachefills, datamay bemovedby theservice
to storagesystemswithin the hub for short-termretention. At this point a stream
(potentially,but not necessarily,live) is beingcapturedandstored.Note that storageis
not adirectconcernof theuserprocess.

UserSystem

UserS
User Systen_

i/O Agent

Figure 4: Data Flow Examples

When a user process wishes to read a stream, it begins by calling yopen, and, once again,
the service interface software establishes communication with its local hub. When yread

is called, the local hub determines if the desired data is present. If not, the hub finds a

remote hub that has the desired data, and requests a transfer from the remote hub to the

local hub. Now, with data present in the local hub, a connection is established from an

agent in the hub to the interface software in the user process, and data is forwarded. As
the data arrives from a remote hub, it is cached in the local hub. As the cache fills, data

moves to a storage system for retention. Note that the reading process may or may not be

receiving live data, and is unaware and unconcerned as to whether the data originated at a

local or a remote location. In fact, all storage details are hidden from the user.

71

A near-real-timeflow is establishedwhena streamis beingproducedat the sametime
thatit is beingconsumed.Shouldacommunicationoutageoccurbetweenhubs,datawill
not be lost becausethehubthat is local to thestreamproducerwill continueto cacheand
storedata. Of course,a networkoutagebetweenthe producingsystemandits local hub
will causea data loss if the buffering capability of the producingsystemis exceeded.
Consumersandproducerscanrun on thestorageplatform. In this case,thenetworkwill
becircumventedandweexpectto observereadingandwriting at veryneardiskspeeds.

Oneof thegreatadvantagesof theservicedescribedhereis that accessingstoreddatais
exactly the sameas accessinglive data. It is the responsibilityof the local hub to
discoverwherepiecesof a streamarestored. If a streamhasbeenmovedfrom cacheto
storage,thehubwill ensurethatit is drawninto cacheagainwith forwardingidenticalto
thenear-real-timecase.

It is common to associaterelated information with a byte stream. A follow-on
development,the AnnotatedStreamService,built on topof the Byte StreamStorageand
TransferService,supportsthis notion. An annotatedstreamconsistsof severn byte
streams,one being a datastreamand the remainderbeing annotationstreams. The
Annotated Stream Service provides a mechanism for a stream writer to associate

annotations with specific points in a data stream. For a stream reader, the service

synchronizes the reading of the annotations with the reading of the data. The internal

form of an annotation is chosen by the application developer. The service merely

provides a framework for the association, storage, and synchronized delivery of the data

and the annotations. As with the byte stream service, all of this is done while still

preserving a simple "open, close, read, write" interface.

III. Storage Strategy

Guiding Principles: NSA has adopted a COTS, to the maximum extent possible,

approach to any Mass Storage requirement. As a direct result of this policy, we have

carefully approached the global distributed storage architecture steered by previous work

in developing a scalable set of disk and tape components, subsystems and systems

matched to specific requirements. Significant consideration is given to performance,

functionality, and cost, with a keen eye on system level reliability. To the maximum

extent possible, we strive to achieve vendor independence and network connectivity;

wherever possible, we desire data sharing and products which facilitate technology inser-

tion. Finally, remote monitoring is key to overall system viability.

72

Product Considerations:

Disk Storage: For both large and small nodes the disk subsystems are almost always

specified to be RAID devices. While the majority of the current set of disk subsystems

are SCSI-2 F/W, our high-end nodes will require fibrechannel speeds. The ability to

remote the arrays beyond today's cable limits greatly enhances our physical layout

potential. In addition, the ability to connect large arrays to multiple servers enhances our

reliability, shareability, and control. NSA has relied heavily on shared network disk

arrays within our supercomputer complexes and has urged industry to develop products

of this class. To achieve the desired performance and flexibility for the individual nodes

of this architecture, extremely large network RAID arrays are a must. The disk arrays

must be platform independent, reducing reliance on any single vendor.

Robotic Tape Storage: Our larger nodes require robotic tape libraries which range from

tens of terabytes up to multiple petabytes. They are sized to match specific user needs

from a performance, capacity, and user access perspective. We envision each node to

have multiple tape libraries, matched to the specific type of stream data. Our goal is to

make our distributed library infrastructure transparent to the user. While certain data

types lend themselves to very large capacity libraries, others do not. As such, our

experience with the current set of storage management software offerings forces us to

adopt a multiple library strategy. The majority of today's products use commercial

relational database management system (RDBMS) products to manage the files stored in
the libraries and this artifact must be accommodated in the overall architecture. Most of

the products evaluated to date are limited to the tens of millions of files. Large files (>150

MB) are ideally suited to high performance helical drives which can deliver petabyte

class individual libraries. However, small file (15 MB) mass storage libraries will

outpace the RDBMS' ability to scale to the I00 million file mark. Because the stream

service controls file creation, large files should be the norm. While these numbers are not

exact for today's storage software offerings, they are representative of the challenge that

system architects face in designing a multi-node hub. The vendor community can deliver

hardware that easily scales into the multiple petabyte range today; however, the storage

software lacks the maturity, performance, and ability to service this class of system.

Although the smaller nodes are disk only, they will still require high-performance robotic

tape backup systems.

Storage Software: There are two common cross vendor categories of storage software in

wide use today at NSA, Hierarchical Storage Management (HSM) and Virtual File

System (VFS) software. Of the two, the latter is most widely used. HSMs classically are

major computer systems (processors, disk, robotic tape) that are network connected to

multiple client systems. Both VFS and HSM are primarily skewed towards the

operational paradigm of store with infrequent retrieves. While performance is dependent

on multiple factors and is highly dependent upon the network connectivity, VFS systems

generally deliver higher performance than HSMs. VFSs today use large UNIX servers

with RAID arrays and manage 7-40 TB robotic tape libraries. They too are network

73

connectedto multiple client systems,but do not possessthe full range of archive
functionality of the HSM. However,they interactwith almostanyclient and providea
file systemview to that client;hencetheyareveryeasyto install andarewidely usedby a
diverse populationdue to their simple interface. To support the distributed storage
architecture,our largenodewill bebasedon multiple VFS storagesystems. Emerging
multimediasoftwareproductseasilyembracethis technologywhichfurther enhancesits
role in our infrastructure. Finally, the multiple library approachfacilitates technology
insertionfor the physicalcomponentsthat makeup the storagelibrary allowing for the
migration of data to be performedas a backgroundjob as older drive technologyis
retired.

MetaData: The most difficult element of the storage system is the metadata system.

With multiple, disparate libraries connected to the large node, and several nodes in a hub

within the archive, transparent access by a diverse population is facilitated by this critical

element. Its importance has been recognized by the Mass Storage Community as

evidenced by the IEEE sponsoring a yearly MetaData Conference. The ability to manage

hundreds of millions to billions of files can only be done by a carefully designed

metadata system. NSA has taken the approach of a distributed metadata system for its

scientific processing complex; however, to scale to the numbers of files needed for the

future, significant breakthroughs are needed. Suffice it to say, that the integration and use

of metadata and its storage will need to be accomplished. Scalability here is fundamental

to the success of this endeavor. This paper will not address metadata.

IV. Initial Development Plans

The architecture discussed above will be implemented incrementally. The intent of the

initial configuration is to present users with the first view of the stream service/

distributed archive and validate the concepts contained in the architecture.

Near Term Plans: Initially, a single-system, mid-sized hub will be built. The hub will

employ a medium performance UNIX server with tens to hundreds of gigabytes of disk

cache and a single robotic tape library. The storage software will be Virtual File System

based. The hub will run early increments of the stream service software and will be used

to validate many of the concepts of the architecture. After the first hub has been built and

tested, a second, large, two-system hub will be built. The hub will consist of two

identical high-end UNIX servers, each with a large size RAID disk array and one or more

robotic tape libraries. Both high-end and medium performance/capacity libraries may be

employed and, again, the storage software will be Virtual File System based. The

systems will have multiple network connections of differing performance levels (FDDI,

ATM, and Ethernet). The two-system hub will run a follow-on increment of the stream

service that manages the multiple storage platforms. Inter-hub data transfers will be

based on a static policy. A mix of user workstations which mirror the current

74

infrastructure will complete the near term test configuration (Figure 5). Using this

configuration, we intend to evaluate the user interface, desired functionality, initial

scalability, overall reliability, as well as subsystem, software, and system reliability. We

will focus on the adequacy of the specific technologies chosen, calibrate perlbrmance

choke points and scalability considerations. As a result of our analyses, the overall

architecture will be modified, if necessary, and the lessons learned will be incoporated

into our long term plans.

Work
Stations

ETHERNET

Mid-Size
Hub

¢'-NNNN _ STK Wolf Creek_

[] _ a_A
/1 rin _--_ w}V_

I w/Clarion
AID Disk Array

J

Large
Hub

FDDI ATM ",,_n_AGENCYLAN

Fieure 5: Comnlete Near Term Test

Longer Term Plans: While this area is highly dependent upon the prior phase and its

success, several features are already slated for implemention in the longer term, Among
these are:

Inclusion of a wide area network (WAN) connected hub

Inclusion of bandwidth management and flow control between hubs across the
WAN

Increasing the numbers/scales of hubs and MSS libraries

Evaluation of metadata system approaches and their scalability

75

Other areas under consideration, even though they are merely "on the drawing board",
include:

Expansion of the server area to include Massively Parallel Processors (MPPs)
Inclusion of Web-based user access

Inclusion of MultiMedia into the test set

V. Conclusions

In summary, this paper has been an attempt to present a brief overview of the architecture

for a global distributed archive with near-real-time access characteristics and the strategy

for use of mass storage systems within that architecture. The instantiation of the

architecture is clearly a long term project that must be approached incrementally. As

such, it is vital that the interface to the archive be implemented early on and that the

archive be expanded and improved transparently to early users, behind this interface.

Although we would not minimize the challenge of the long term development, we hope

that the tremendous benefits to be gained by building such an archive are evident from

this brief exposition.

76

